What are insulation displaced connectors

Insulation displacement connectors are connectors which can be mounted directly over an insulated wire without stripping the insulation.  These connectors come with a sharp blade like arrangement which slices through the insulation and makes contact with the conductor.  

The blade and the conductor are cold welded to form a strong connection.  Insulation displacement connectors are used in telephone and network circuits.  Ribbon cables are generally used with insulation displacement connectors.  Ethernet cables are also mounted to insulation displacement connectors.


Posted by: Electrotechnik

What is Conductive Paint ? Where is it used ?

Conductive paint is a special type of paint which conducts electricity.  The conduction continues even after the paint has dried.  Conductive paint is a paint which contains micron-sized particles of silver, copper or nickel.  These particles give the paint its conductive property.  

Conductive paint is spray painted on to the surface.  The thickness of the conductive paint can be between 0.125mm to 0.5 mm thick.  

Conductive paint is used in electronic devices to provide shielding from Electromagnetic fields and Radio waves.  

As conductive paint is a suspension with metallic particles, it is necessary to shake the paint container before painting.  If the particles settle down at the bottom of the container and are not uniformly distributed, the conductive properties of the paint will be less.  


Posted by: Electrotechnik

Can Electroplating be done on non-metals ?

This is a question we come across often.  Electroplating involves depositing one metal which is connected to the anode on to another metal which is connected to the cathode.

Non-metals such as glass, plastic can be electroplated after they have been coated with a conductive paint.  The conductive paint provides a surface on which the coating can take place.  Another method of providing a conductive surface is the use of amorphous carbon powder over which the coating can be done.  

More recent techniques involve etching the plastic surface with Chromic acid.  The acid is then neutralized.  The surface of the plastic is activated by with a solution containing tin or palladium. The surface is then coated with a layer of nickel or copper. 


Posted by: Electrotechnik

What are Magnetic Hydraulic Circuit Breakers ? How do they function ?

Magnetic Hydraulic Circuit Breakers work on the principle of the magnetic effects of the overcurrents.  However, they differ from standard magnetic circuit breakers as they have a hydraulic time delay mechanism.

The delay is created by forcing the core to move through a cylinder filled with silicone fluid.  When the overcurrent occurs, the magnetic field created pulls the core.  The  core has to pass through a cylinder filled with silicone fluid.  This introduces the time delay.

Thus if the overcurrent is momentary, the core goes back after the current comes back to normal.  If the overcurrent persists, the core travels towards the coil.

When the core reaches the coil, the reluctance of the  magnetic circuit changes.  This creates sufficient flux to attract the armature which causes the protecting device to trip and the contacts to separate.

Once the contacts separate, the current becomes zero.  The magnetic field ceases and the core returns to its original position.

The advantage of the magnetic hydraulic circuit breakers is that they can be reset immediately after tripping unlike thermal overcurrent elements which require a cooling period.

Magnetic Hydraulic Circuit Breakers provide accurate, relatively inexpensive and reliable overcurrent protection.  They are independent of ambient temperature.

Magnetic Hydraulic Circuit Breakers are available both for AC and DC applications.

Posted by: Electrotechnik
Related Posts Plugin for WordPress, Blogger...